Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649187

RESUMO

All cancer cells reprogram metabolism to support aberrant growth. Here, we report that cancer cells employ and depend on imbalanced and dynamic heme metabolic pathways, to accumulate heme intermediates, that is, porphyrins. We coined this essential metabolic rewiring "porphyrin overdrive" and determined that it is cancer-essential and cancer-specific. Among the major drivers are genes encoding mid-step enzymes governing the production of heme intermediates. CRISPR/Cas9 editing to engineer leukemia cell lines with impaired heme biosynthetic steps confirmed our whole-genome data analyses that porphyrin overdrive is linked to oncogenic states and cellular differentiation. Although porphyrin overdrive is absent in differentiated cells or somatic stem cells, it is present in patient-derived tumor progenitor cells, demonstrated by single-cell RNAseq, and in early embryogenesis. In conclusion, we identified a dependence of cancer cells on non-homeostatic heme metabolism, and we targeted this cancer metabolic vulnerability with a novel "bait-and-kill" strategy to eradicate malignant cells.


Assuntos
Sistemas CRISPR-Cas , Heme , Porfirinas , Humanos , Heme/metabolismo , Porfirinas/metabolismo , Porfirinas/farmacologia , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/genética , Redes e Vias Metabólicas/genética , Diferenciação Celular/genética , Edição de Genes , Animais , Camundongos
2.
Cancer Res Commun ; 3(12): 2623-2639, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38051103

RESUMO

Currently, there are no clinically approved drugs that directly thwart mutant KRAS G12D, a major driver of human cancer. Here, we report on the discovery of a small molecule, KRB-456, that binds KRAS G12D and inhibits the growth of pancreatic cancer patient-derived tumors. Protein nuclear magnetic resonance studies revealed that KRB-456 binds the GDP-bound and GCP-bound conformation of KRAS G12D by forming interactions with a dynamic allosteric binding pocket within the switch-I/II region. Isothermal titration calorimetry demonstrated that KRB-456 binds potently to KRAS G12D with 1.5-, 2-, and 6-fold higher affinity than to KRAS G12V, KRAS wild-type, and KRAS G12C, respectively. KRB-456 potently inhibits the binding of KRAS G12D to the RAS-binding domain (RBD) of RAF1 as demonstrated by GST-RBD pulldown and AlphaScreen assays. Treatment of KRAS G12D-harboring human pancreatic cancer cells with KRB-456 suppresses the cellular levels of KRAS bound to GTP and inhibits the binding of KRAS to RAF1. Importantly, KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer whose tumors harbor KRAS G12D and KRAS G12V and who relapsed after chemotherapy and radiotherapy. These results warrant further development of KRB-456 for pancreatic cancer. SIGNIFICANCE: There are no clinically approved drugs directly abrogating mutant KRAS G12D. Here, we discovered a small molecule, KRB-456, that binds a dynamic allosteric binding pocket within the switch-I/II region of KRAS G12D. KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer. This discovery warrants further advanced preclinical and clinical studies in pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
3.
J Immunol ; 211(4): 527-538, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37449905

RESUMO

IgE-mediated mast cell activation is a driving force in allergic disease in need of novel interventions. Statins, long used to lower serum cholesterol, have been shown in multiple large-cohort studies to reduce asthma severity. We previously found that statins inhibit IgE-induced mast cell function, but these effects varied widely among mouse strains and human donors, likely due to the upregulation of the statin target, 3-hydroxy-3-methylgutaryl-CoA reductase. Statin inhibition of mast cell function appeared to be mediated not by cholesterol reduction but by suppressing protein isoprenylation events that use cholesterol pathway intermediates. Therefore, we sought to circumvent statin resistance by targeting isoprenylation. Using genetic depletion of the isoprenylation enzymes farnesyltransferase and geranylgeranyl transferase 1 or their substrate K-Ras, we show a significant reduction in FcεRI-mediated degranulation and cytokine production. Furthermore, similar effects were observed with pharmacological inhibition with the dual farnesyltransferase and geranylgeranyl transferase 1 inhibitor FGTI-2734. Our data indicate that both transferases must be inhibited to reduce mast cell function and that K-Ras is a critical isoprenylation target. Importantly, FGTI-2734 was effective in vivo, suppressing mast cell-dependent anaphylaxis, allergic pulmonary inflammation, and airway hyperresponsiveness. Collectively, these findings suggest that K-Ras is among the isoprenylation substrates critical for FcεRI-induced mast cell function and reveal isoprenylation as a new means of targeting allergic disease.


Assuntos
Anafilaxia , Inibidores de Hidroximetilglutaril-CoA Redutases , Camundongos , Humanos , Animais , Receptores de IgE/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Farnesiltranstransferase/metabolismo , Mastócitos/metabolismo , Anafilaxia/metabolismo , Transdução de Sinais , Degranulação Celular , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Colesterol/metabolismo , Prenilação
4.
iScience ; 26(3): 106082, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36852277

RESUMO

KRAS mutations are prevalent in pancreatic and lung cancers, but not all mutant (mt) KRAS tumors are addicted to mt KRAS. Here, we discovered a 30-gene transcriptome signature "KDS30" that encodes a novel EGFR/ERBB2-driven signaling network and predicts mt KRAS, but not NRAS or HRAS, oncogene addiction. High KDS30 tumors from mt KRAS lung and pancreatic cancer patients are enriched in genes upregulated by EGFR, ERBB2, mt KRAS or MEK. EGFR/ERBB2 (neratinib) and MEK (cobimetinib) inhibitor combination inhibits tumor growth and prolongs mouse survival in high, but not low, KDS30 mt KRAS lung and pancreatic xenografts, and is synergistic only in high KDS30 mt KRAS patient-derived organoids. Furthermore, mt KRAS high KDS30 lung and pancreatic cancer patients live significantly shorter lives than those with low KDS30. Thus, KDS30 can identify lung and pancreatic cancer patients whose tumors are addicted to mt KRAS, and predicts EGFR/ERBB2 and MEK inhibitor combination response.

5.
Nat Prod Bioprospect ; 12(1): 35, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36121517

RESUMO

Spiropyrimidines vanquish a significant situation in the field of heterocyclic chemistry, they are broadly utilized as an antibacterial, an inhibitor of multidrug opposition, or an antiplatelet and antithrombotic drug. Phosphate, the principal Moroccan mineral wealth occupies a vital spot in the economic sector and its valuation is a goal continually looked for. Among the conceivable outcomes of valorization, its utilization in heterogeneous catalysis which thought about an exceptionally encouraging new way. In this context, the focus on the reaction of the synthesis of spiropyrimidine, catalyzed by natural phosphate (NP) and by fluoroapatite (Fap), are used alone or doped by cobalt. These phosphate catalysts were characterized by XRD, IR and SEM, while the synthesized spiropyrimidine was identified by IR, GC-MS and NMR. The obtained yield with fluorapatite doped by cobalt (Co/Fap), at room temperature in ethanol is very high and shows a high impact performance induced by a synergistic effect compared to that of NP alone.

6.
Mol Cancer Res ; 20(3): 456-467, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782371

RESUMO

The relationship between the checkpoint kinase Chk1 and the STAT3 pathway was examined in multiple myeloma cells. Gene expression profiling of U266 cells exposed to low (nmol/L) Chk1 inhibitor [PF-477736 (PF)] concentrations revealed STAT3 pathway-related gene downregulation (e.g., BCL-XL, MCL-1, c-Myc), findings confirmed by RT-PCR. This was associated with marked inhibition of STAT3 Tyr705 (but not Ser727) phosphorylation, dimerization, nuclear localization, DNA binding, STAT3 promoter activity by chromatin immunoprecipitation assay, and downregulation of STAT-3-dependent proteins. Similar findings were obtained in other multiple myeloma cells and with alternative Chk1 inhibitors (e.g., prexasertib, CEP3891). While PF did not reduce GP130 expression or modify SOCS or PRL-3 phosphorylation, the phosphatase inhibitor pervanadate antagonized PF-mediated Tyr705 dephosphorylation. Significantly, PF attenuated Chk1-mediated STAT3 phosphorylation in in vitro assays. Surface plasmon resonance analysis suggested Chk1/STAT3 interactions and PF reduced Chk1/STAT3 co-immunoprecipitation. Chk1 CRISPR knockout or short hairpin RNA knockdown cells also displayed STAT3 inactivation and STAT3-dependent protein downregulation. Constitutively active STAT3 diminished PF-mediated STAT3 inactivation and downregulate STAT3-dependent proteins while significantly reducing PF-induced DNA damage (γH2A.X formation) and apoptosis. Exposure of cells with low basal phospho-STAT3 expression to IL6 or human stromal cell conditioned medium activated STAT3, an event attenuated by Chk1 inhibitors. PF also inactivated STAT3 in primary human CD138+ multiple myeloma cells and tumors extracted from an NSG multiple myeloma xenograft model while inhibiting tumor growth. IMPLICATIONS: These findings identify a heretofore unrecognized link between the Chk1 and STAT3 pathways and suggest that Chk1 pathway inhibitors warrant attention as novel and potent candidate STAT3 antagonists in myeloma.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Mieloma Múltiplo , Apoptose , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/metabolismo
7.
Am J Transplant ; 22(3): 717-730, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34668635

RESUMO

Prevention of allograft rejection often requires lifelong immune suppression, risking broad impairment of host immunity. Nonselective inhibition of host T cell function increases recipient risk of opportunistic infections and secondary malignancies. Here we demonstrate that AJI-100, a dual inhibitor of JAK2 and Aurora kinase A, ameliorates skin graft rejection by human T cells and provides durable allo-inactivation. AJI-100 significantly reduces the frequency of skin-homing CLA+ donor T cells, limiting allograft invasion and tissue destruction by T effectors. AJI-100 also suppresses pathogenic Th1 and Th17 cells in the spleen yet spares beneficial regulatory T cells. We show dual JAK2/Aurora kinase A blockade enhances human type 2 innate lymphoid cell (ILC2) responses, which are capable of tissue repair. ILC2 differentiation mediated by GATA3 requires STAT5 phosphorylation (pSTAT5) but is opposed by STAT3. Further, we demonstrate that Aurora kinase A activation correlates with low pSTAT5 in ILC2s. Importantly, AJI-100 maintains pSTAT5 levels in ILC2s by blocking Aurora kinase A and reduces interference by STAT3. Therefore, combined JAK2/Aurora kinase A inhibition is an innovative strategy to merge immune suppression with tissue repair after transplantation.


Assuntos
Aurora Quinase A , Imunidade Inata , Animais , Aurora Quinase A/metabolismo , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Humanos , Janus Quinase 2 , Camundongos , Camundongos Endogâmicos C57BL , Células Th17 , Transplante Homólogo
8.
Clin Cancer Res ; 27(14): 4012-4024, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33879459

RESUMO

PURPOSE: Among human cancers that harbor mutant (mt) KRas, some, but not all, are dependent on mt KRas. However, little is known about what drives KRas dependency. EXPERIMENTAL DESIGN: Global phosphoproteomics, screening of a chemical library of FDA drugs, and genome-wide CRISPR/Cas9 viability database analysis were used to identify vulnerabilities of KRas dependency. RESULTS: Global phosphoproteomics revealed that KRas dependency is driven by a cyclin-dependent kinase (CDK) network. CRISPR/Cas9 viability database analysis revealed that, in mt KRas-driven pancreatic cancer cells, knocking out the cell-cycle regulators CDK1 or CDK2 or the transcriptional regulators CDK7 or CDK9 was as effective as knocking out KRas. Furthermore, screening of a library of FDA drugs identified AT7519, a CDK1, 2, 7, and 9 inhibitor, as a potent inducer of apoptosis in mt KRas-dependent, but not in mt KRas-independent, human cancer cells. In vivo AT7519 inhibited the phosphorylation of CDK1, 2, 7, and 9 substrates and suppressed growth of xenografts from 5 patients with pancreatic cancer. AT7519 also abrogated mt KRas and mt p53 primary and metastatic pancreatic cancer in three-dimensional (3D) organoids from 2 patients, 3D cocultures from 8 patients, and mouse 3D organoids from pancreatic intraepithelial neoplasia, primary, and metastatic tumors. CONCLUSIONS: A link between CDK hyperactivation and mt KRas dependency was uncovered and pharmacologically exploited to abrogate mt KRas-driven pancreatic cancer in highly relevant models, warranting clinical investigations of AT7519 in patients with pancreatic cancer.


Assuntos
Quinases Ciclina-Dependentes/fisiologia , Neoplasias Pancreáticas/etiologia , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Animais , Quinases Ciclina-Dependentes/metabolismo , Humanos , Camundongos , Fosforilação , Proteoma
9.
Clin Cancer Res ; 27(10): 2712-2722, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33753457

RESUMO

PURPOSE: In this first-in-human, phase I, GVHD prevention trial (NCT02891603), we combine pacritinib (PAC), a JAK2 inhibitor, with sirolimus to concurrently reduce T-cell costimulation via mTOR and IL6 activity. We evaluate the safety of pacritinib when administered with sirolimus plus low-dose tacrolimus (PAC/SIR/TAC) after allogeneic hematopoietic cell transplantation. PATIENTS AND METHODS: The preclinical efficacy and immune modulation of PAC/SIR were investigated in xenogeneic GVHD. Our phase I trial followed a 3+3 dose-escalation design, including dose level 1 (pacritinib 100 mg daily), level 2 (pacritinib 100 mg twice daily), and level 3 (pacritinib 200 mg twice daily). The primary endpoint was to identify the lowest biologically active and safe dose of pacritinib with SIR/TAC (n = 12). Acute GVHD was scored through day +100. Allografts included 8/8 HLA-matched related or unrelated donor peripheral blood stem cells. RESULTS: In mice, we show that dual JAK2/mTOR inhibition significantly reduces xenogeneic GVHD and increases peripheral regulatory T cell (Treg) potency as well as Treg induction from conventional CD4+ T cells. Pacritinib 100 mg twice a day was identified as the minimum biologically active and safe dose for further study. JAK2/mTOR inhibition suppresses pathogenic Th1 and Th17 cells, spares Tregs and antileukemia effector cells, and exhibits preliminary activity in preventing GVHD. PAC/SIR/TAC preserves donor cytomegalovirus (CMV) immunity and permits timely engraftment without cytopenias. CONCLUSIONS: We demonstrate that PAC/SIR/TAC is safe and preliminarily limits acute GVHD, preserves donor CMV immunity, and permits timely engraftment. The efficacy of PAC/SIR/TAC will be tested in our ongoing phase II GVHD prevention trial.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunossupressores/administração & dosagem , Inibidores de Janus Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Tacrolimo/administração & dosagem , Animais , Aurora Quinase A/metabolismo , Ensaios Clínicos como Assunto , Gerenciamento Clínico , Avaliação Pré-Clínica de Medicamentos , Doença Enxerto-Hospedeiro/diagnóstico , Transplante de Células-Tronco Hematopoéticas/métodos , Teste de Histocompatibilidade , Humanos , Imunofenotipagem , Janus Quinase 2/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Fator de Transcrição STAT3/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Doadores de Tecidos , Transplante Homólogo
10.
Cancer Immunol Res ; 9(1): 62-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33188139

RESUMO

An obstacle to the development of chimeric antigen receptor (CAR) T cells is the limited understanding of CAR T-cell biology and the mechanisms behind their antitumor activity. We and others have shown that CARs with a CD28 costimulatory domain drive high T-cell activation, which leads to exhaustion and shortened persistence. This work led us to hypothesize that by incorporating null mutations of CD28 subdomains (YMNM, PRRP, or PYAP), we could optimize CAR T-cell costimulation and enhance function. In vivo, we found that mice given CAR T cells with only a PYAP CD28 endodomain had a significant survival advantage, with 100% of mice alive after 62 days compared with 50% for mice with an unmutated endodomain. We observed that mutant CAR T cells remained more sensitive to antigen after ex vivo antigen and PD-L1 stimulation, as demonstrated by increased cytokine production. The mutant CAR T cells also had a reduction of exhaustion-related transcription factors and genes such as Nfatc1, Nr42a, and Pdcd1 Our results demonstrated that CAR T cells with a mutant CD28 endodomain have better survival and function. This work allows for the development of enhanced CAR T-cell therapies by optimizing CAR T-cell costimulation.


Assuntos
Antígenos CD28/antagonistas & inibidores , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Citocinas/biossíntese , Feminino , Humanos , Imunoterapia Adotiva , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fatores de Transcrição NFATC/genética , Células NIH 3T3 , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptor de Morte Celular Programada 1/genética , Receptores de Antígenos Quiméricos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
JCI Insight ; 5(9)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255769

RESUMO

Immunosuppressive donor Tregs can prevent graft-versus-host disease (GVHD) or solid-organ allograft rejection. We previously demonstrated that inhibiting STAT3 phosphorylation (pSTAT3) augments FOXP3 expression, stabilizing induced Tregs (iTregs). Here we report that human pSTAT3-inhibited iTregs prevent human skin graft rejection and xenogeneic GVHD yet spare donor antileukemia immunity. pSTAT3-inhibited iTregs express increased levels of skin-homing cutaneous lymphocyte-associated antigen, immunosuppressive GARP and PD-1, and IL-9 that supports tolerizing mast cells. Further, pSTAT3-inhibited iTregs significantly reduced alloreactive conventional T cells, Th1, and Th17 cells implicated in GVHD and tissue rejection and impaired infiltration by pathogenic Th2 cells. Mechanistically, pSTAT3 inhibition of iTregs provoked a shift in metabolism from oxidative phosphorylation (OxPhos) to glycolysis and reduced electron transport chain activity. Strikingly, cotreatment with coenzyme Q10 restored OxPhos in pSTAT3-inhibited iTregs and augmented their suppressive potency. These findings support the rationale for clinically testing the safety and efficacy of metabolically tuned, human pSTAT3-inhibited iTregs to control alloreactive T cells.


Assuntos
Rejeição de Enxerto , Doença Enxerto-Hospedeiro , Fator de Transcrição STAT3/fisiologia , Linfócitos T Reguladores , Animais , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Humanos , Camundongos , Oxirredução , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
12.
J Biol Chem ; 295(10): 3055-3063, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32001619

RESUMO

In human cancer cells that harbor mutant KRAS and WT p53 (p53), KRAS contributes to the maintenance of low p53 levels. Moreover, KRAS depletion stabilizes and reactivates p53 and thereby inhibits malignant transformation. However, the mechanism by which KRAS regulates p53 is largely unknown. Recently, we showed that KRAS depletion leads to p53 Ser-15 phosphorylation (P-p53) and increases the levels of p53 and its target p21/WT p53-activated fragment 1 (WAF1)/CIP1. Here, using several human lung cancer cell lines, siRNA-mediated gene silencing, immunoblotting, quantitative RT-PCR, promoter-reporter assays, and reactive oxygen species (ROS) assays, we demonstrate that KRAS maintains low p53 levels by activating the NRF2 (NFE2-related factor 2)-regulated antioxidant defense system. We found that KRAS depletion led to down-regulation of NRF2 and its targets NQO1 (NAD(P)H quinone dehydrogenase 1) and SLC7A11 (solute carrier family 7 member 11), decreased the GSH/GSSG ratio, and increased ROS levels. We noted that the increase in ROS is required for increased P-p53, p53, and p21Waf1/cip1 levels following KRAS depletion. Downstream of KRAS, depletion of RalB (RAS-like proto-oncogene B) and IκB kinase-related TANK-binding kinase 1 (TBK1) activated p53 in a ROS- and NRF2-dependent manner. Consistent with this, the IκB kinase inhibitor BAY11-7085 and dominant-negative mutant IκBαM inhibited NF-κB activity and increased P-p53, p53, and p21Waf1/cip1 levels in a ROS-dependent manner. In conclusion, our findings uncover an important role for the NRF2-regulated antioxidant system in KRAS-mediated p53 suppression.


Assuntos
Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteínas ral de Ligação ao GTP/antagonistas & inibidores , Proteínas ral de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/metabolismo
13.
Target Oncol ; 14(5): 613-618, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31372813

RESUMO

BACKGROUND: Geranylgeranyltransferase I (GGTase I) catalyzes geranylgeranylation, a modification required for the function of many oncogenic RAS-related proteins. GGTI-2418 is a peptidomimetic small molecule inhibitor of GGTase I. OBJECTIVE: The aim of this study was to establish the maximum tolerated dose of GGTI-2418 in patients with advanced solid tumors. PATIENTS AND METHODS: This was a phase I, open-label, dose-escalation study conducted in two US centers (University of Pennsylvania and Indiana University) in adults with treatment-refractory advanced solid tumors. An accelerated dose-escalation schema was used across eight dose levels, from 120 to 2060 mg/m2, administered on days 1-5 of each 21-day cycle. RESULTS: Fourteen patients were enrolled in the dose-escalation cohort. No dose-limiting toxicities were observed, and 2060 mg/m2 was determined to be the maximum tolerated dose. The only potential drug-related grade 3 or 4 toxicities were elevated bilirubin and alkaline phosphatase in a single patient with concurrent malignant biliary obstruction. No objective responses were observed. Four of thirteen evaluable patients had stable disease for up to 6.7 months. The study was terminated prior to dose expansion based on a sponsor decision. Pharmacokinetic analysis demonstrated a mean terminal half-life of 1.1 h. CONCLUSIONS: GGTI2418 was safe and tolerable at all tested dose levels with some evidence of disease stability. Due to rapid elimination, dosing of GGTI2418 in this study may have been inadequate to achieve optimal inhibition of its target, GGTase I.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Adulto , Idoso , Antineoplásicos/química , Antineoplásicos/farmacocinética , Estudos de Coortes , Relação Dose-Resposta a Droga , Esquema de Medicação , Término Precoce de Ensaios Clínicos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Humanos , Imidazóis/química , Dose Máxima Tolerável , Pessoa de Meia-Idade , Peptidomiméticos , Prenilação , Resultado do Tratamento
14.
Cancer Cell Int ; 19: 189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31367187

RESUMO

BACKGROUND: Vitamin E δ-tocotrienol (VEDT), a vitamin E compound isolated from sources such as palm fruit and annatto beans, has been reported to have cancer chemopreventive and therapeutic effects. METHODS: We report a novel function of VEDT in augmenting tumor necrosis factor-related apoptosis-inducing ligand- (TRAIL-) induced apoptosis in pancreatic cancer cells. The effects of VEDT were shown by its ability to trigger caspase-8-dependent apoptosis in pancreatic cancer cells. RESULTS: When combined with TRAIL, VEDT significantly augmented TRAIL-induced apoptosis of pancreatic cancer cells. VEDT decreased cellular FLICE inhibitory protein (c-FLIP) levels without consistently modulating the expression of decoy death receptors 1, 2, 3 or death receptors 4 and 5. Enforced expression of c-FLIP substantially attenuated VEDT/TRAIL-induced apoptosis. Thus, c-FLIP reduction plays an important part in mediating VEDT/TRAIL-induced apoptosis. Moreover, VEDT increased c-FLIP ubiquitination and degradation but did not affect its transcription, suggesting that VEDT decreases c-FLIP levels through promoting its degradation. Of note, degradation of c-FLIP and enhanced TRAIL-induced apoptosis in pancreatic cancer cells were observed only with the anticancer bioactive vitamin E compounds δ-, γ-, and ß-tocotrienol but not with the anticancer inactive vitamin E compounds α-tocotrienol and α-, ß-, γ-, and δ-tocopherol. CONCLUSIONS: c-FLIP degradation is a key event for death receptor-induced apoptosis by anticancer bioactive vitamin E compounds in pancreatic cancer cells. Moreover, VEDT augmented TRAIL inhibition of pancreatic tumor growth and induction of apoptosis in vivo. Combination therapy with TRAIL agonists and bioactive vitamin E compounds may offer a novel strategy for pancreatic cancer intervention.

15.
Clin Cancer Res ; 25(19): 5984-5996, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31227505

RESUMO

PURPOSE: Mutant KRAS is a major driver of pancreatic oncogenesis and therapy resistance, yet KRAS inhibitors are lacking in the clinic. KRAS requires farnesylation for membrane localization and cancer-causing activity prompting the development of farnesyltransferase inhibitors (FTIs) as anticancer agents. However, KRAS becomes geranylgeranylated and active when cancer cells are treated with FTIs. To overcome this geranylgeranylation-dependent resistance to FTIs, we designed FGTI-2734, a RAS C-terminal mimetic dual FT and geranylgeranyltransferase-1 inhibitor (GGTI). EXPERIMENTAL DESIGN: Immunofluorescence, cellular fractionation, and gel shift assays were used to assess RAS membrane association, Western blotting to evaluate FGTI-2734 effects on signaling, and mouse models to demonstrate its antitumor activity. RESULTS: FGTI-2734, but not the selective FTI-2148 and GGTI-2418, inhibited membrane localization of KRAS in pancreatic, lung, and colon human cancer cells. FGTI-2734 induced apoptosis and inhibited the growth in mice of mutant KRAS-dependent but not mutant KRAS-independent human tumors. Importantly, FGTI-2734 inhibited the growth of xenografts derived from four patients with pancreatic cancer with mutant KRAS (2 G12D and 2 G12V) tumors. FGTI-2734 was also highly effective at inhibiting, in three-dimensional cocultures with resistance promoting pancreatic stellate cells, the viability of primary and metastatic mutant KRAS tumor cells derived from eight patients with pancreatic cancer. Finally, FGTI-2734 suppressed oncogenic pathways mediated by AKT, mTOR, and cMYC while upregulating p53 and inducing apoptosis in patient-derived xenografts in vivo. CONCLUSIONS: The development of this novel dual FGTI overcomes a major hurdle in KRAS resistance, thwarting growth of patient-derived mutant KRAS-driven xenografts from patients with pancreatic cancer, and as such it warrants further preclinical and clinical studies.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Alquil e Aril Transferases/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Farnesiltranstransferase/metabolismo , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Commun ; 9(1): 5154, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514931

RESUMO

Mutant KRas is a significant driver of human oncogenesis and confers resistance to therapy, underscoring the need to develop approaches that disable mutant KRas-driven tumors. Because targeting KRas directly has proven difficult, identifying vulnerabilities specific for mutant KRas tumors is an important alternative approach. Here we show that glycogen synthase kinase 3 (GSK3) is required for the in vitro and in vivo growth and survival of human mutant KRas-dependent tumors but is dispensable for mutant KRas-independent tumors. Further, inhibiting phosphorylation of GSK3 substrates c-Myc on T58 and ß-catenin on S33/S37/T41 and their subsequent upregulation contribute to the antitumor activity of GSK3 inhibition. Importantly, GSK3 blockade inhibits the in vivo growth of G12D, G12V, and G12C mutant KRas primary and metastatic patient-derived xenografts from pancreatic cancer patients who progressed on chemo- and radiation therapies. This discovery opens new avenues to target mutant KRas-dependent cancers.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Células A549 , Animais , Linhagem Celular Tumoral , Feminino , Genes ras , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas Proto-Oncogênicas p21(ras)/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Death Differ ; 25(11): 1885-1904, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323273

RESUMO

The relative contribution of intrinsic genetic factors and extrinsic environmental ones to cancer aetiology and natural history is a lengthy and debated issue. Gene-environment interactions (G x E) arise when the combined presence of both a germline genetic variant and a known environmental factor modulates the risk of disease more than either one alone. A panel of experts discussed our current understanding of cancer aetiology, known examples of G × E interactions in cancer, and the expanded concept of G × E interactions to include somatic cancer mutations and iatrogenic environmental factors such as anti-cancer treatment. Specific genetic polymorphisms and genetic mutations increase susceptibility to certain carcinogens and may be targeted in the near future for prevention and treatment of cancer patients with novel molecularly based therapies. There was general consensus that a better understanding of the complexity and numerosity of G × E interactions, supported by adequate technological, epidemiological, modelling and statistical resources, will further promote our understanding of cancer and lead to novel preventive and therapeutic approaches.


Assuntos
Interação Gene-Ambiente , Neoplasias/genética , Medicina de Precisão , Carcinogênese , Consenso , Dano ao DNA , Estudo de Associação Genômica Ampla , Humanos , Neoplasias/epidemiologia , Neoplasias/patologia , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Nature ; 546(7659): 554-558, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28614300

RESUMO

In response to environmental cues that promote IP3 (inositol 1,4,5-trisphosphate) generation, IP3 receptors (IP3Rs) located on the endoplasmic reticulum allow the 'quasisynaptical' feeding of calcium to the mitochondria to promote oxidative phosphorylation. However, persistent Ca2+ release results in mitochondrial Ca2+ overload and consequent apoptosis. Among the three mammalian IP3Rs, IP3R3 appears to be the major player in Ca2+-dependent apoptosis. Here we show that the F-box protein FBXL2 (the receptor subunit of one of 69 human SCF (SKP1, CUL1, F-box protein) ubiquitin ligase complexes) binds IP3R3 and targets it for ubiquitin-, p97- and proteasome-mediated degradation to limit Ca2+ influx into mitochondria. FBXL2-knockdown cells and FBXL2-insensitive IP3R3 mutant knock-in clones display increased cytosolic Ca2+ release from the endoplasmic reticulum and sensitization to Ca2+-dependent apoptotic stimuli. The phosphatase and tensin homologue (PTEN) gene is frequently mutated or lost in human tumours and syndromes that predispose individuals to cancer. We found that PTEN competes with FBXL2 for IP3R3 binding, and the FBXL2-dependent degradation of IP3R3 is accelerated in Pten-/- mouse embryonic fibroblasts and PTEN-null cancer cells. Reconstitution of PTEN-null cells with either wild-type PTEN or a catalytically dead mutant stabilizes IP3R3 and induces persistent Ca2+ mobilization and apoptosis. IP3R3 and PTEN protein levels directly correlate in human prostate cancer. Both in cell culture and xenograft models, a non-degradable IP3R3 mutant sensitizes tumour cells with low or no PTEN expression to photodynamic therapy, which is based on the ability of photosensitizer drugs to cause Ca2+-dependent cytotoxicity after irradiation with visible light. Similarly, disruption of FBXL2 localization with GGTi-2418, a geranylgeranyl transferase inhibitor, sensitizes xenotransplanted tumours to photodynamic therapy. In summary, we identify a novel molecular mechanism that limits mitochondrial Ca2+ overload to prevent cell death. Notably, we provide proof-of-principle that inhibiting IP3R3 degradation in PTEN-deregulated cancers represents a valid therapeutic strategy.


Assuntos
Apoptose , Cálcio/metabolismo , Proteínas F-Box/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Ligação Competitiva , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Fibroblastos , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/deficiência , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/metabolismo , Mutação , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Fotoquimioterapia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Proc Natl Acad Sci U S A ; 114(21): 5503-5508, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28500274

RESUMO

Cerebral cavernous malformations (CCMs) are common vascular anomalies that develop in the central nervous system and, more rarely, the retina. The lesions can cause headache, seizures, focal neurological deficits, and hemorrhagic stroke. Symptomatic lesions are treated according to their presentation; however, targeted pharmacological therapies that improve the outcome of CCM disease are currently lacking. We performed a high-throughput screen to identify Food and Drug Administration-approved drugs or other bioactive compounds that could effectively suppress hyperproliferation of mouse brain primary astrocytes deficient for CCM3. We demonstrate that fluvastatin, an inhibitor of 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase and the N-bisphosphonate zoledronic acid monohydrate, an inhibitor of protein prenylation, act synergistically to reverse outcomes of CCM3 loss in cultured mouse primary astrocytes and in Drosophila glial cells in vivo. Further, the two drugs effectively attenuate neural and vascular deficits in chronic and acute mouse models of CCM3 loss in vivo, significantly reducing lesion burden and extending longevity. Sustained inhibition of the mevalonate pathway represents a potential pharmacological treatment option and suggests advantages of combination therapy for CCM disease.


Assuntos
Difosfonatos/uso terapêutico , Ácidos Graxos Monoinsaturados/uso terapêutico , Hemangioma Cavernoso do Sistema Nervoso Central/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Imidazóis/uso terapêutico , Indóis/uso terapêutico , Animais , Astrócitos/efeitos dos fármacos , Difosfonatos/farmacologia , Drosophila , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Células Endoteliais/efeitos dos fármacos , Feminino , Fluvastatina , Ensaios de Triagem em Larga Escala , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Gravidez , Prenilação de Proteína/efeitos dos fármacos , Ácido Zoledrônico
20.
Oncotarget ; 8(19): 31554-31567, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28404939

RESUMO

The growth, metastasis, and chemotherapy resistance of pancreatic ductal adenocarcinoma (PDAC) is characterized by the activation and growth of tumor-initiating cells in distant organs that have stem-like properties. Thus, inhibiting growth of these cells may prevent PDAC growth and metastases. We have demonstrated that δ-tocotrienol, a natural form of vitamin E (VEDT), is bioactive against cancer, delays progression, and prevents metastases in transgenic mouse models of PDAC. In this report, we provide the first evidence that VEDT selectively inhibits PDAC stem-like cells. VEDT inhibited the viability, survival, self-renewal, and expression of Oct4 and Sox2 transcription factors in 3 models of PDAC stem-like cells. In addition, VEDT inhibited the migration, invasion, and several biomarkers of epithelial-to-mesenchymal transition and angiogenesis in PDAC cells and tumors. These processes are critical for tumor metastases. Furthermore, in the L3.6pl orthotopic model of PDAC metastases, VEDT significantly inhibited growth and metastases of these cells. Finally, in an orthotopic xenograft model of human PDAC stem-like cells, we showed that VEDT significantly retarded the growth and metastases of gemcitabine-resistant PDAC human stem-like cells. Because VEDT has been shown to be safe and to reach bioactive levels in humans, this work supports investigating VEDT for chemoprevention of PDAC metastases.


Assuntos
Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Vitamina E/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Camundongos , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle , Vitamina E/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...